

SECURITY &QoS AWARENESS SCHEDULER FOR DISTRIBUTED MULTI-
SERVER SYSTEM IN PACKET SWITCHED NETWORKS

A Thesis Submitted to the Faculty of the Graduate College in Partial Fulfillment of
the Requirements for the Master Degree in Computer Engineering/Industrial

Automation

By:

Saraa M. Awawdeh

Advisor

 Mohammad Al-Jarrah, Ph.D.

Yarmouk University
Irbid, Jordan
Dec. 2016

المجدول ذو خاصية أمان وجودة الخدمة في الأنظمة الموزعة متعددة الخوادم فيالعنوان:
الشبكات محولة الطرود

عواودة، سراء محمدالمؤلف الرئيسي:

الجراح، محمد(مشرف)مؤلفين آخرين:

2016التاريخ الميلادي:

إربدموقع:

65 - 1الصفحات:

:MD 871190رقم

رسائل جامعيةنوع المحتوى:

Englishاللغة:

رسالة ماجستيرالدرجة العلمية:

جامعة اليرموكالجامعة:

كلية الدراسات العلياالكلية:

الاردنالدولة:

Dissertationsقواعد المعلومات:

أمن الشبكات، جدولة المعلومات، الأنظمة متعددة الخوادممواضيع:

http://search.mandumah.com/Record/871190رابط:

© 2021 دار المنظومة. جميع الحقوق محفوظة.
للاستخدام المادة هذه طباعة أو تحميل يمكنك محفوظة. النشر حقوق جميع أن علما النشر، حقوق أصحاب مع الموقع الإتفاق على بناء متاحة المادة هذه
دار أو النشر حقوق أصحاب من خطي تصريح دون الالكتروني) البريد أو الانترنت مواقع (مثل وسيلة أي عبر النشر أو التحويل أو النسخ ويمنع فقط، الشخصي

المنظومة.

http://search.mandumah.com/Record/871190

SECURITY &QoS AWARENESS SCHEDULER FOR DISTRIBUTED MULTI-
SERVER SYSTEM IN PACKET SWITCHED NETWORKS

A Thesis Submitted to the Faculty of the Graduate College in Partial Fulfillment of
the Requirements for the Master Degree in Computer Engineering/Industrial

Automation

By:

Saraa M. Awawdeh

Advisor

 Mohammad Al-Jarrah, Ph.D.

Yarmouk University
Irbid, Jordan
Dec. 2016

II

Declaration

I am Saraa Awawdeh, I am hereby declare that this thesis entitled "SECURITY

&QoS AWARENESS SCHEDULER FOR DISTRIBUTED MULTI-SERVER

SYSTEM IN PACKET SWITCHED NETWORKS", submitted for "Department of

Computer Engineering at Hijjawi Faculty for Engineering Technology" is my original

work and it has not been presented for any degree in any other university, and that

any additional sources of information have been properly cited.

Name: Saraa M. Awawdeh.

ID Number: 2013970013

Date: Dec 15th 2016

Signature:

III

ACKNOWLEDGEMENTS

My first and many thanks would be for God, whose blesses were the key

behind my success in whole life. I would like to thank my research's supervisor for

his guidance and support. Dr. Mohammad Al-Jarrah and the cooperated committee

members, thank you all. Dad, mom, brothers, sisters and whole family, big thanks for

your prayers, help and encouragement. My dear friends and colleagues, thanks for

your continuous support. My profound gratitude for my best sister-in-law, Fatimah,

thanks for your nice heart and support. My sincere thanks also go to my supporter

uncle Ahmad Awawdeh. Finally, I would like to dedicate this thesis to my kids,

Salma, Renad, Hashem and the man whose love, support, and patience allows me to

complete this thesis. To my husband, Ma'en, thanks for being in my life.

IV

TABLE OF CONTENTS

DECLARATION ... II

ACKNOWLEDGMENT .. III

LIST OF FIGURES .. VI

LIST OF TABLES ... VIII

ABSTRACT ... IX

CHAPTER

 1. INTRODUCTION .. 1

1.1 General Overview .. 1

1.2 Research Motivation .. 2

1.3 Research Contributions ... 3

1.4 Thesis Organization ... 4

 2. BACKGROUND AND LITERATURE REVIEW 6

2.1 Client/Server Model ... 6

2.2 Scheduling in Real-time Systems .. 8

2.3 Scheduling Algorithms for Cloud Servers 10

 2.4 Security Services for Cloud Servers .. 12

. 3. PROPOSED SYSTEM DESIGN & METHODOLOGY 16

3.1 Introduction .. 16

3.2 System Model using Multi-Agent System 17

 3.2.1 Client Agent .. 18

V

 3.2.2 Scheduler Agent .. 19

 3.2.3 Server Agent .. 20

 3.2.4 Resource Estimator Agent ... 21

 3.2.5 Controller Agent .. 21

3.3 Server's Security Services ... 22

3.4 Single vs. Multi-Server Modes .. 24

 3.4.1 Single Server Mode ... 24

 3.4.2 Multi-Server Mode .. 25

 3.5 Research Methodology ... 26

 3.5.1 Single Server Mode ... 28

 3.5.2 Multi-Server Mode .. 29

 4. PROPOSED SYSTEM IMPLEMENTATION .. 33

 5. SYSTEM SIMULATION & RESULTS .. 42

5.1 Introduction ... 42

5.2 System Parameters .. 43

5.3 The QoS Metrics at the Scheduler Sub-Agent 44

5.4 System's Performance at the Server Sub-Agent 51

 6. CONCLUSION & FUTURE WORK ... 58

6.1 Conclusion ... 58

6.2 Future Work .. 60

 REFERENCES ... 61

VI

LIST OF FIGURES

Figure 3.1: Multi-agent system process .. 17

Figure 3.2: Network topology ... 19

Figure 3.3: Agent-based communication design .. 20

Figure 3.4: Single server mode ... 25

Figure 3.5: Multi server mode .. 26

Figure 4.1: System parameters .. 34

Figure 4.2: QoS system results ... 35

Figure 4.3: Request's class. ... 36

Figure 4.4: Generating successive uniform hits .. 37

Figure 4.5: Creating successive uniform hits .. 37

Figure 4.6: Generation of real-time requests .. 38

Figure 4.7: FCFS queuing algorithm .. 39

Figure 4.8: EDF queuing algorithm .. 40

Figure 4.9: Server's class .. 40

Figure 4.10: Generating servers' permutations ... 41

Figure 5.1: Miss ratio metric at the scheduler/ single-server mode 45

Figure 5.2: Average delay metric at the scheduler/ single-server mode 46

Figure 5.3: Miss ratio at the scheduler/ multi-server (2-permutations) 47

Figure 5.4: Miss ratio at the scheduler/ multi-server (3-permutations) 48

Figure 5.5: Average delay at the scheduler/ multi-server (2-permutations) 49

Figure 5.6: Average delay at the scheduler/ multi-server (3-permutations) 49

Figure 5.7: Miss ratio at the scheduler .. 50

Figure 5.8: Average delay at the scheduler ... 51

VII

Figure 5.9: Average server utilization/ single-server mode 52

Figure 5.10: Average server utilization/ multi-server mode (2-Permutations) 53

Figure 5.11: Average server utilization/ multi-server mode (3-Permutations) 54

Figure 5.12: Average server utilization .. 55

Figure 5.13: Effect of server's CPU power on miss rate .. 56

Figure 5.14: Effect of server's CPU power on average delay 57

VIII

LIST OF TABLES

Table 3.1: Cryptographic security algorithms .. 23

IX

SECURITY &QoS AWARENESS SCHEDULER FOR DISTRIBUTED
MULTI-SERVER SYSTEM IN PACKET SWITCHED NETWORKS

ABSTRACT

Saraa M. Awawdeh, Security &QoSAwareness Scheduler for Distributed Multi-

Server System in Packet Switched Networks, Master of Science in Computer

Engineering/Industrial Automation, Department of Computer Engineering,

Yarmouk University, 2016, (Advisor: Dr. Mohammad Al-Jarrah)

The huge and rapid revolution in the telecommunication field makes an evolution

in the type of services provided by the network's technology. Early, the network was

providing best effort services to its customers, where delivery was the only guarantee

provided by such network. Nowadays, networks become commercial-based entities,

where different classes of services with different requirements should be guaranteed

for different types of clients.

In order to serve clients' requests, the network technology adopts the client/server

model. Such model is a distributed structure that provides a communication scheme

between two main entities: (1) Client: the one who requests the service; (2) Server:

the one who provide the service. Besides providing quality of service (QoS) to its

clients, network technologies should be capable of providing them with the required

security requirements, and thus protecting the traffic streams from being hacked by

different levels of network-security threats.

In this thesis, we proposed a security-awareness scheduler for distributed multi-

server system. According to the distributed multi-server systems, each server node

has its own security guarantees, memory resources, and power capabilities. The

X

scheduler serves the clients requests by choosing the appropriate server(s), such that

both QoS and security requirements are guaranteed.

The scheduler implements an online monitoring mechanism for the distributed

system through a feed-back message passing technique. Such mechanism is the key

behind the scheduling algorithm, where estimation for the server's resources is based

on such feedback. Accordingly, the scheduler selects the appropriate server that

guarantees the real-time client's requests. As a result, our proposed algorithm will

protect the system from security threats and prevent the whole system from being

congested by those heavy traffic flows. In this thesis, extensive simulations were

carried out for two systems: single-server and multi-server systems. The results show

that the EDF-based multi-server system outperforms the FCFS based multi-server in

terms of miss-ratio, average delay, and utilization. The results also show that the

multi-server system outperforms the single-server for the same performance metrics,

and thus it’s more efficient in protecting the network from being congested by heavy

traffic load.

1

CHAPTER I

INTRODUCTION

1.1 General Overview

The type of services provided by the telecommunication technologies should be

compatible with the huge and rapid revolution in the IT field. Such revolution makes

a transition from those non-real time services (best effort) to real-time services with

complex and strict quality-of-service (QoS) and security guarantees [1]. The

transition into internet-of-things (IOT) increases the number of clients that are

connecting to the internet exponentially [2], and thus higher computation demands are

needed. In order to accommodate such requested services, powerful and efficient

servers were deployed by service providers.

A server is a machine that accepts requests from a set of machines (clients) and

serves them within the required QoS guarantees in a well-defined client/server model

such as mail server model, web server model, file server model, database server

model, and print server model [3]. According to the process of resource provisioning,

two main servers are implemented: dedicated servers and cloud servers. Dedicated

servers are those that are fully controlled by an organization without sharing them

with any other one. On the other hand, cloud servers are shared among different

clients, where each client rents its needs of resources from the server system [2].

Regardless the type of the implemented server, different performance metrics were

2

defined such as average load (requests/sec), error rates, average response time, peak

response time, uptime, CPU utilization, memory utilization, and power

consumption[4].

In order to guarantee the client's requests within the QoS requirements, different

scheduling algorithms were implemented at the server side [5]. Such scheduling

algorithms assign the server's resources to a set of tasks, such that the best

schedulability test of the server's resources is achieved and the tasks are served within

their timing and QoS constraints. According to the IOT, the servers are susceptible to

different types of security threats. Such threats degraded the type of service provided

by the server's system[6]. They also may lead into a catastrophe, especially for those

real-time security-critical applications. Servers implement different security services

on the requested data as a layer of defense against such security threats.

1.2 Research Motivation

In this research, a security-awareness scheduler for distributed multi-server system

was proposed to guarantee both QoS and security requirements for a set of real-time

clients' flows in a packet switched network. The scheduler unit implements an online

monitoring mechanism for the distributed system through a feed-back message

passing technique. Such mechanism will be the key behind the scheduling algorithm,

where estimation for the server's resources will be based on such feedback. Since

each server node has its own security services, our proposed scheduler assigns the

3

tasks such that the security requirements are guaranteed. The whole process was

modeled based on agent-based mechanism, where the system was decomposed into a

set of cooperative sub-agents and controlled by a well-defined set of rules (protocol).

According to the number of servers that are used to serve the client's request, two

main modes were defined for the distributed server system: single server mode and

multi-server mode. As a result, both security and QoS requirements are guaranteed

for different data flows and the overall performance of the system is protected from

being congested by heavy traffic load.

1.3 Research Contributions

While passing through the different phases of our proposed system, the following

contributions were achieved:

1) The proposed system was modeled and designed using agent-based

methodology, where the overall system was decomposed into a set of

cooperative agents controlled by a well-defined protocol.

2) Our security-aware scheduling algorithm integrates the scheduling unit that is

based on the earliest deadline first (EDF) algorithm with a security awareness

unit to provide both QoS and security requirements to a set of real-time data

streams.

4

3) The proposed algorithm keeps monitoring the overall system through a

feedback mechanism implemented by the resource estimation sub-agents, and

thus protecting the entire system from being congested by heavy traffic load.

4) The system was modeled using two main modes: (1) single server mode, where

one server can be used to accommodate the client's request; (2) multi-server

mode, where more than one server can cooperate to provide both security and

QoS requirement of the system, and thus more reliability, less delay, and less

miss rate.

1.4 Thesis Organization

This thesis is organized in a structure of six chapters including the

introduction chapter. In this section, we present the overall outline of the proposed

security-awareness scheduler for distributed multi-server systems.

An exhaustive literature review covering the recent related work to our

proposed system was presented in chapter two. It provides a description of the

client/server model: properties and types, scheduling algorithms for cloud servers,

and security services for those cloud servers.

The process of designing our proposed system according to the real-time

agent-based methodology was presented in chapter three. The modeling process of

each sub-agent was extensively viewed in this chapter. The design process of two

5

main server modes was presented in this chapter: single-server and multi-server

modes. The security service model for each mode was also designed in this chapter.

Finally, the research methodology that describes the communication protocol for the

proposed multi-agent system was provided in this chapter for the two server's modes:

single and multi-server. In chapter four, we provide the process of employing the .Net

platform and its real-time capabilities in implementing each sub-agent of the agent

based system. It also provides the real-time implementation of the communication

protocol that governs the overall functionalities of such agent-based model.

Chapter five provides the overall extensive simulations and system results.

According to this chapter, system parameters were initialized to carry out the required

simulations to show the performance of our proposed systems. The performance of

the proposed system was viewed in this chapter from different agent's perspectives.

This thesis ends with chapter six that provides the main research conclusions. It also

provides some suggested ideas that may direct the researchers in the future for some

novel ideas.

6

CHAPTER II

BACKGROUND AND LITERATURE REVIEW

2.1 Client/Server Model

Nowadays, the world is internet connected, where a huge number of clients from

different classes are requesting for different types of services. Client/server model

was the adopted design to accommodate such requests, where a network-based

protocol governs the communication over a distributed structure of client (service

requester) and server (service provider) nodes [7].

The earliest client/server models adopt the dedicated servers in their designs, where

an organization has a full control over the providers (servers) without any type of

sharing. Such servers are used for those companies that need high computation and

security requirements. Dedicated servers suffer from different limitations such as high

power consumption, limited memory resources, frequent system failures (unreliable)

with high repairing cost, low utilization, and no remote access [2].

In order to accommodate such limitations, virtual private server (VPS) was

proposed. In such server, the actual physical server will be partitioned virtually to

appear as multi-server system. Such partitioning will eliminate the process of halting

the dedicated server completely, where client need not to pay for a full server's power

(system resources are distributed over clients) [2]. Accordingly, the VPS solves only

7

those limitations of the dedicated server that are related to power consumption and

maintenance. Other limitations were solved by proposing the cloud server.

Cloud computing depends on distributing the processing capabilities, resources,

applications, and systems among different computing entities. As a result, the local

computation power of a single entity could be virtually expanded into infinite

processing power (internet power) [8]. Accordingly, dedicated servers will not be

sufficient for such design.

To handle such model, cloud servers were proposed, where each client rents its

needs of resources from the server system, and thus resources are dynamically scaled

either ways (up and down) with efficient and easy backup for the data. The first cloud

server was proposed by the European Organization for Nuclear Research (CERN) in

1991 and was called CERN httpd that is running on NEXTSTEP [9]. It was proposed

to provide a communication scheme between a set of researchers' computation

stations using hypertext system. With more and more clients connecting to the

internet and requesting for services, the power capabilities were enhanced to

accommodate such request. The W3C server proposed in 1994 was the key behind

enhancing the cloud computing, where an independent platform and portable server

was proposed to be able for being forward and backward compatibility [10].

Nowadays, cloud servers provide three main services for the clients: storage,

processing, and software as a service (SaaS). Accordingly, research emphasizes on

the performance metrics of the servers that make them capable of handling the huge

8

amount of incoming requests such as average load (requests/sec), error rates, average

response time, peak response time, uptime, CPU utilization, memory utilization, and

power consumption[11]. As a result, high computation and powerful models of

servers were proposed to offer the previous services to the clients such as application

server, communication server, database server, fax server, mail server, web server,

computing server, proxy server, game server, etc.

2.2 Scheduling in Real-Time Systems

A real-time system is any information processing system which has to respond to

externally generated input stimuli within a finite and specified period. A successful

response depends on the logical result within the time it was delivered, and failure to

respond is as bad as the wrong response. The real-time systems are classified as hard

and soft real-time systems [36]. A hard RT system is an overrun in response time

leads to potential loss of life and/or big financial damage, many of these systems are

considered to be safety critical, in general there is a cost function associated with the

system.Soft Real-Time systems are systems where deadline overruns are accepted,

but not desired. There are no catastrophic effects of missing one or more deadlines

but there is a cost associated to overrunning that is often connected to Quality-of-

Service (QoS) [37].Tasks are divided into three models, periodic, aperiodic and

sporadic tasks [35].

9

Periodic real-time tasks are time-driven tasks that are activated regularly at fixed

periods. Aperiodic real-time tasks are event-driven tasks that are characterized by the

computation time, the deadline and some probabilistic forms for arrival time like

Poisson model. Sporadic real-time tasks are tasks with known minimum inter-arrival

time [38].

In some real-time scheduling algorithms, tasks could be preemptive or non-

preemptive. A task can be preempted if another task of higher priority becomes ready.

In contrast, the execution of a non-preemptive task should be completed without

interruption once it is started [39].

In priority driven scheduling, a priority is assigned to each task. Assigning the

priorities can be done statically or dynamically while the system is running. The real-

time scheduling algorithms are categorized, based on their priority assignment

method, into fixed and dynamic priority scheduling algorithms.

Earliest deadline scheduling is an optimal dynamic priority scheduler, whereevery

process tells the scheduler its deadline. The scheduling algorithm simply allows the

process that is in the greatest danger of missing its deadline to run first [40].

Generally, this means that one process will run to completion if it has an earlier

10

deadline than another. The only time a process would be preempted would be when a

new process with an even shorter deadline becomes ready to run.

2.3 Scheduling Algorithms for Cloud Servers

In order to serve the clients' requests within the required QoS requirements,

different scheduling algorithms were implemented at the server side. The scheduling

algorithm decides which task will be executed next on the server among a set of

arrived tasks to the scheduling pool of the single server system. In a multi-server

system, the scheduling algorithm will decide which task will be executed next and the

server node that will be used to serve such task [12]. The proposed scheduling

algorithm depends on the type of services requested by the customers. Accordingly, a

set of QoS metrics will be the key of implementing each scheduling algorithm.

Different scheduling algorithms were proposed for cloud computing. In [13], a

multi-level scheduling algorithm was proposed to serve tasks over a homogeneous

multi-server system. The tasks were categorized into two main priorities with a group

of server nodes serving each priority level. Dedicated server scheduling algorithm

(DSS) was proposed in [14] to serve a set of tasks in homogeneous environment. The

DSS algorithm was an enhancement to the work performed in [13], where the QoS

metrics are achieved with minimal number of computational nodes.

In [15], a dynamic priority-based scheduling algorithm was proposed to guarantee

the QoS requirements for a pre-prioritized set of arrived tasks to the scheduler in a

11

homogeneous multi-server system. Such scheduling algorithm was implemented

based on an improvement of the DSS and was named as Dynamic-DSS (DDSS) that

shows higher performance in serving the clients' requests according to their pre-

defined priorities.

Heterogeneous Dynamic Dedicated Server Scheduling (h-DDSS) was proposed in

[5] to serve a set of pre-prioritized set of tasks over a heterogonous multi-server

system. According to the extensive simulations, h-DDSS shows higher performance

over DDSS and DSS in serving the arrived task in terms of throughput, utilization,

and miss rate QoS metrics.

Besides guaranteeing the QoS requirements of the arrived tasks, some scheduling

algorithms preserve the overall performance of the multi-server system in terms of

energy reduction, power consumption and management, and pollution control. Such

scheduling algorithms are known as green task scheduling algorithms [16].

In [17], a green scheduling algorithm was proposed to minimize the energy

consumption in a multi-server system. The algorithm integrates a neural network

predictor for turning of unused servers and restarting them again, and thus

minimizing the number of running servers, which leads to minimizing the server's

energy consumption. A linear combination of dynamic voltage frequency scaling

(DVFS) was proposed in [18] to decrease the energy consumption of the multi-server

system. Extensive simulations over a set of 1500 task graphs from three different

categories (LU decomposition, random, and Gauss-Jordan) show an efficient power

12

saving.Two novel scheduling algorithms for power consumption were proposed in

[19]. The algorithms are based on predicting the unused time by the task and use it in

reducing the execution speed of upcoming tasks. As a result, the overall energy

consumption for the multi-server system will be reduced.

In modeling and analyzing the performance of the scheduling algorithms for cloud

computing, a lot of research was carried out. A fault-recovery scheduling algorithm

was proposed in [15] to analyze the overall performance of the system under such

reliability condition. According to the queuing theory, simulation results shows that

such recovery option degraded the overall performance of the system through

increasing the average response time.

In [20], six green task scheduling algorithms were implemented and analyzed for a

multi-server cloud system. According to the energy consumption and miss ratio

metrics, simulation results prove that the shortest task first was the most efficient one.

2.4 Security Services for Cloud Servers

Cloud computing is an approach that provides a convenient, universal, and

geographical-independent access to a shared set of computing resources. According

to such model of centralized data, network technologies should be able to provide a

level of security for cloud system, and thus making it robust against different cloud

security threats [21]. Such security services follow different categories such as data

security, identity and access management, trust, and assurance [22].

13

Different security models were proposed for cloud computing. According to the

networking entity that coordinates and controls the transactions in the security model,

three main security models were proposed. In [23], Software as a Service security

model (SaaS) was proposed. In such model the network provider is the coordinator of

the security model, where all transactions are performed through such end provider.

Platform as a Service (PaaS) was proposed in [24] to provide security services that

are coordinated by the clients (customers & system developers). Accordingly, such

model is what we called it on-demand security model. In [25], Infrastructure as a

service security model (IaaS) was proposed to provide security services that are

coordinated by both system provider and the clients. Accordingly, a level of

negotiation on the security service will occur.

According to data security in cloud computing, confidentiality security service was

the key behind protecting the database storage from the spoofing security threat. Such

security service could be achieved through cryptography. Encryption is the most

common cryptographic technique used for clouds. Different encryption-based

security models were proposed for securing data in clouds [26].

In [27], a security model that combines the federated identity management (FIM)

with the hierarchical identity-based cryptography (HIBC) was proposed to provide a

confidentiality security service in cloud computing. A security model that provides

confidentiality security service for data in clouds was proposed in [28]. The model

provides a method for cipher text retrieval based on efficient encryption mechanism.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

